LANDAUER.

Presenting author: Brahim MORENO, Ph.D.

IM 2022

NEUDOS 14

Tel.: +33 (0) 1 40 95 62 90

Optimization of calibration interval based on equipment metrological history ^(a)Brahim Moreno

FOREWORD

- Calibration needed to ensure traceability to the international system of units
- Periodic calibration is a tool to ensure that no significant drift has occured during the elapsed period
- IMS often required to comply with ISO/IEC 17025 □ Clause 6.4.7 "The laboratory shall establish a calibration programme, which shall be reviewed and adjusted as necessary in order to maintain confidence in the status of calibration"

Method	Pros	Cons	
Engineering intuition	None	 Not quiet reliable Hard to justify 	Method 2: Control chart
Manufacturer recommendation	 Easy to implement No detailed knowledge of the instrument needed 	 May be a starting point BUT if not refined may lead to hazarduous results due to particularities of the measurement process implemented 	 Uncertainty estimate on measurand Uncertainty on the calibration System drift measurable
ILAC-G24 OIML D 10	 Document from internationally recognized bodies 5 methods based on metrology Generalized methods not specific to particular instruments 	 Guidance only: detailed implementations not available Detailed knowledge of the instrument needed 	 System drift measurable Calibration data available

- Reference dosemeters expired (fading, natural background...) and cannot be used for an infinite number of time
- Need to balance cost, process efficiency and quality

optimize efficiently calibration period ?

How to

define/

- certainty on the libration
- stem drift measurable
- libration data available

METHOD IMPLEMENTATION AND BASIC PRINCIPLES

STEP 2: DRIFT ASSESSMENT

Single measurement system No maintenance or maintenance period large enough to cumulate calibration factor data

Calibration factor vs elapsed time \mathcal{C}_F time Linear fit (dashed blue line) Drift = slope

Multiple equivalent measurement systems Maintenance period not large enough to cumulate calibration factor data

Calibration factor vs elapsed time for each reader r

Calibration just before and just after the maintenance (ideal case) Individual drift d_i^r measured for each period j and each reader k in between two maintenances: \Box Two points: linear interpolation

□ More than 2 points: linear fit

Drift=average of the d_i^r values

 $|Drift| = \max\{|\bar{d} \pm 2\sigma|\}$

The sign of the drift is given by the sign of $\overline{d} \pm 2\sigma$ associated with max{ $|\overline{d} \pm 2\sigma|$ }

STEP 3: CALIBRATION PERIOD ESTIMATE

EXAMPLE OF INLIGHT READERS AR500 FOR $H_{\rm p}(10)$

$RT_{drift} \equiv \text{Tolerate}$	d drift $ _{u_{rel,H_{p}(10)}}=$	MPME
-------------------------------------	----------------------------------	------

 $RT_{drift} = 47 \%$ for MPME=30 % (RP160) RT_{drift} = 14 % for MPME=16 %

InLight AR500 rea	der	
	<i>RT_{drift}</i> = 47 % MPME=30 %	<i>RT_{drift}</i> = 14 % MPME=16 %
Expanded calibration period [m]	26.9	8.2
Calibration period [m]	23.2	4.5

Method is easy to implement and does not depend on the measurement system

Results are obtained based on available data

Justification of calibration period is based on metrology